
Alternative Kinds of Parallelism:
Single Instruction/Multiple Data Stream

• Single Instruction, 
Multiple Data streams 
(SIMD)
– Computer that exploits 

multiple data streams 
against a single 
instruction stream to 
operations that may be 
naturally parallelized, 
e.g., SIMD instruction 
extensions or Graphics 
Processing Unit (GPU)

4/16/2019 Spring 2011 -- Lecture #13 8



Alternative Kinds of Parallelism:
Multiple Instruction/Multiple Data Streams

• Multiple Instruction, 
Multiple Data streams 
(MIMD)
– Multiple autonomous 

processors simultaneously 
executing different 
instructions on different 
data. 

– MIMD architectures 
include multicore and 
Warehouse Scale 
Computers (datacenters)

4/16/2019 Spring 2011 -- Lecture #13 9



Flynn Taxonomy of parallel computers

• From 2011, SIMD and MIMD most common parallel computers
• Most common parallel processing programming style: Single 

Program Multiple Data (“SPMD”)
– Single program that runs on all processors of an MIMD
– Cross-processor execution coordination through conditional expressions 

(thread parallelism)
• SIMD (aka hw-level data parallelism): specialized function units, 

for handling lock-step calculations involving arrays
– Scientific computing, signal processing, multimedia (audio/video processing)

4/16/2019 Spring 2011 -- Lecture #13 10

Data streams

Single Parallel

Instruction
Streams

Single SISD: Intel Pentium 4 SIMD: SSE x86, ARM neon, GPGPUs, …

Multiple MISD: No examples today MIMD: SMP (Intel, ARM, …)



SIMD Architectures
• Data parallelism: executing one operation on 

multiple data streams
– Single control unit
– Multiple datapaths (processing elements – PEs) 

running in parallel
• PEs are interconnected and exchange/share data as directed 

by the control unit
• Each PE performs the same operation on its own local data

• Example to provide context:
– Multiplying a coefficient vector by a data vector 

(e.g., in filtering)
y[i] := c[i]  x[i], 0  i < n

4/16/2019 Spring 2011 -- Lecture #13 Slide 11



4/16/2019 Spring 2011 -- Lecture #13 12

“Advanced Digital Media Boost”

• To improve performance, SIMD instructions
– Fetch one instruction, do the work of multiple instructions



Example: SIMD Array Processing

4/16/2019 Spring 2011 -- Lecture #13 13

for each f in array
f = sqrt(f)

for each f in array
{

load f to the floating-point register
calculate the square root
write the result from the register to memory

}

for each 4 members in array
{

load 4 members to the SIMD register
calculate 4 square roots in one operation
write the result from the register to memory

}

SISD

SIMD



Data Level Parallelism and SIMD

• SIMD wants adjacent values in memory that 
can be operated in parallel

• Usually specified in programs as loops
for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;

• How can reveal more data level parallelism 
than available in a single iteration of a loop?

• Unroll loop and adjust iteration rate

4/16/2019 Spring 2011 -- Lecture #14 14



Loop Unrolling

Loop Unrolling can be implemented from C code

for(i=1000; i>0; i=i-1)
x[i] = x[i] + s;

into

for(i=1000; i>0; i=i-4)
{
x[ i ] = x[ i ] + s; 
x[i-1] = x[i-1] + s;  
x[i-2] = x[i-2] + s; 
x[i-3] = x[i-3] + s;

}

4/16/2019 Spring 2011 -- Lecture #14 15



Loop Unrolling (MIPS)
Assumptions: 
- R1 is initially the address of the element in the array with the highest 

address
- F2 contains the scalar value s
- 8(R2) is the address of the last element to operate on.

Loop:

1. l.d F0, 0(R1) ; F0=array element

2. add.d F4,F0,F2 ; add s to F0

3. s.d F4,0(R1) ; store result

4. addui R1,R1,#-8 ; decrement pointer 8 byte 

5. bne R1,R2,Loop ; repeat loop if R1 != R2

for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;



Loop Unrolled
Loop: l.d F0,0(R1)            

add.d F4,F0,F2            
s.d F4,0(R1)
l.d F6,-8(R1)           
add.d F8,F6,F2            
s.d F8,-8(R1)
l.d F10,-16(R1)       
add.d F12,F10,F2        
s.d F12,-16(R1)
l.d F14,-24(R1)       
add.d F16,F14,F2        
s.d F16,-24(R1)
addui R1,R1,#-32
bne R1,R2,Loop

NOTE:
1. Different Registers eliminate stalls 
2. Only 1 Loop Overhead every 4 iterations
3. This unrolling works if loop_limit(mod 4) = 0



Loop Unrolled Scheduled

4 Loads side-by-side: Could replace with 4 wide SIMD 
Load

4 Adds side-by-side: Could replace with 4 wide SIMD Add

4 Stores side-by-side: Could replace with 4 wide SIMD Store

Loop: l.d F0,0(R1)            
l.d F6,-8(R1)           
l.d F10,-16(R1)       
l.d F14,-24(R1)       
add.d F4,F0,F2            
add.d F8,F6,F2            
add.d F12,F10,F2        
add.d F16,F14,F2        
s.d F4,0(R1)
s.d F8,-8(R1)
s.d F12,-16(R1)
s.d F16,-24(R1)
addui R1,R1,#-32
bne R1,R2,Loop



Generalizing Loop Unrolling

• A loop of n iterations
• k copies of the body of the loop

Then we will run the loop with 1 copy of the 
body n(mod k) times and 
with k copies of the body floor(n/k) times


